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Abstract 

High-altitude sports are affected by hypoxic stress-

related alterations and, consequently, may trigger severe 

events such as sport-related sudden death; thus, into-the-

field monitoring of respiration is essential. A Segmented-

Beat Modulation Method (SBMM)-based procedure was 

previously proposed to extract electrocardiogram (ECG) -

derived respiration (EDR). The aim of this study is to 

validate SBMM-based procedure for EDR extraction in 

data acquired by wearable sensors during high-altitude 

physical activities. Respiration signal (RES) and ECG 

were recorded using BioHarness 3.0 by Zephyr from 3 

expeditioners, while performing a trek up to 4,556m of 

altitude. EDR was extracted from ECG by SBMM-based 

procedure. RES and EDR were segmented into 60-second 

windows and characterized in terms of breathing rate 

(BRRES and BREDR, respectively). BRRES and BREDR were 

compared by absolute difference (|δ|), concordance 

correlation coefficient (CCC) and linear regression 

analysis. Results confirmed EDR goodness, proved by low 

values of |δ| (2[1;4]cpm), satisfactory CCC (0.62; P-

value<0.05) and good fit of regression line 

(BRRES=0.91∙BREDR+4.47cpm). In conclusion, SBMM-

based procedure is a good method to extract EDR from 

data acquired by wearable sensors during high-altitude 

physical activities. 

 

 

1. Introduction 

High-altitude sports are becoming very popular [1]. 

Every year more than 10 million of people practice sport 

in Alps [2] and more than 35 million Americans travel to 

altitudes over 2,400m [1]. These activities are excellent as 

good life practice, and also proved to be efficient as 

rehabilitative therapies [3]. However, physical activity and 

exposure to high altitudes may trigger severe events, such 

as sport-related sudden deaths and emerging diseases [1]. 

One of the main causes of these fatal events is hypoxia, 

defined as a state in which oxygen is not sufficient at the 

tissue level to maintain adequate homeostasis [4,5]. Lack 

of oxygen requires higher respiratory activity, reflecting 

into an increase of respiratory and cardiac rhythms [6]. 

High respiratory efforts may be triggers of fatal events. 

Consequently, monitoring of respiratory parameters of 

athletes is essential to prevent sport-related death. 

Nowadays, use of wearable sensors is spreading [7]. 

These sensors can directly record several biosignals [7], 

among which the respiration signal (RES), and also 

provide indirect physiological measures, such as breathing 

rate series (BRS). Athletes are used to use wearable sensors 

to monitor their activity and to optimize their performance, 

but these sensors are also potential efficient instruments to 

monitor athletes’ respiration into-the-field, if the quality of 

measurements is clinically reliable. Recent studies suggest 

that, while the quality of direct recordings by wearable 

sensors is very high, the quality of indirect physiological 

measurements may not be [8]. Moreover, the battery and 

the memory of the device may not allow storage of long 

recordings in case of high number of biosignals [7].  

To overcome these limitations, several studies in the 

literature propose to record the electrocardiogram (ECG), 

and to use it to derive not only cardiac but also other 

physiological information, such as respiratory one [9-11]. 

This approach guarantees good performance in long-term 

multi-parameter monitoring. The Segmented-Beat 

Modulation Method (SBMM)-based procedure is able to 

extract the ECG-derived respiration (EDR) [12,13] from 

single-lead ECGs, thus also providing respiratory 

information. Already tested in controlled low-noise 

conditions such as rest and sleep [12,13], this innovative 

method was never assessed in presence of high-noise, such 

as into-the-field exercise.  

Given the into-the-field respiratory monitoring 

importance, this study aims to validate the SBMM-based 

procedure for EDR extraction in data acquired by wearable 

sensors during high-altitude physical activity. 
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2. Materials and Methods 

2.1. Data 

Data consists of cardiorespiratory signals, recorded by 

the chest strap BioHarness 3.0 by Zephyr 

(www.zephyranywhere.com), a reliable wearable sensor 

[13-18] that directly records BRS (cpm; sampled at 1Hz), 

RES (mV; sampled at 17Hz) and ECG (mV; sampled at 

250Hz). Data were acquired from 3 volunteers (Table 1) 

during a multidisciplinary expedition at Monte Rosa (Alps, 

Italy), from August 29th to September 2nd, 2021. 

Expeditioners performed a trek up to 4,556m of altitude, 

arriving to Capanna Margherita (the highest lodge of 

European mountains). The volunteers were monitored 

during the entire trek up; recording lengths are reported in 

Table 1.  

Researchers from University of Chieti (Italy), who 

already tested the use of BioHarness 3.0 by Zephyr during 

previous expeditions [19], designed the study. All 

participants signed an informed consent; the study was an 

ancillary project of wider studies approved by institutional 

expert committees. 

 

2.2. Electrocardiogram-Derived 

Respiration Extraction 

ECG was processed to extract EDR according with the 

procedure represented in Figure 1.  

Electrocardiographic R-peak positions were identified 

by a new procedure based on the ensemble empirical mode 

decomposition (EEMD) [20], which proved to be efficient 

in case of high level of noise. Then, R-peak positions and 

ECG served as inputs of the Segmented-Beat Modulation 

Method (SBMM), a robust template-based filter with the 

peculiarity of being able to maintain information about 

local heart-rate variations [5,6,21]. 

Breathing causes a low-frequency modulation of the 

ECG, usually considered as noise, and thus to be removed, 

by the SBMM. Therefore, the respiratory signal, together 

with other interferences and noises also affecting the ECG, 

is contained in the residual ECG (rECG), computed by 

subtracting the SBMM-filtered clean ECG (cECG) from 

the original ECG.  

 

Table 1. Anamnestic data of the 3 volunteers involved in 

the study. 

 

Volunteers 1 2 3 

Sex female female female 

Height (cm) 161 163 161 

Weight (kg) 52.4 62.7 59.1 

Age (years) 25 28 26 

Blood pressure (mmHg) 64/100 70/110 67/106 

Recording lengths (hours) 17.9 13.7 19.1 

To obtain a clean signal representing the breathing 

activity, the electrocardiogram-derived respiration signal 

(EDR, mV) was obtained by 3rd-order spline interpolation 

of the electrocardiographic R-peak positions on the rECG. 

 

2.3. Feature Extraction and Statistics 

BRS, RES and EDR were segmented into 60s windows. 

All signals were corrupted by high-level of noise 

(considering the highly intensive exercise), thus only 

simultaneous windows that presented reliable R-peak 

identification were considered and characterized in terms 

of heart rate (HR). Each BRS window was characterized 

by the BRS median breathing rate (BRBRS). RES and EDR 

were processed to extract the breathing events, from which 

the corresponding breathing rate series were computed. 

Each RES window was characterized by the median 

breathing rate (BRRES) of the breathing rate series 

corresponding to RES. Each EDR window was 

characterized by the median breathing rate (BREDR) of the 

breathing rate series corresponding to EDR. 

Normality of distributions was assessed by Lilliefors’ 

test. Not normal distributions are reported as 50th[25th;75th] 

percentiles. BR computations were assessed by test of 

equivalence (equivalence margins equal to ±2cpm), 

absolute difference (|δ|) analysis, concordance correlation 

coefficient (CCC) analysis and linear regression analysis, 

comparing BRBRS vs. BRRES, BRBRS vs. BREDR and BRRES 

vs. BREDR. Statistical significance was set at 0.05. 

 

 
 

Figure 1. Procedure for the electrocardiogram-derived 

respiration signal (EDR) extraction from 

electrocardiogram (ECG) recording.  
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3. Results 

Globally, 1347 windows out of 3037 (44%) were 

considered reliable for this study. Specifically, 97 windows 

out of 1073 (10%), 380 windows out of 821 (46%) and 870 

windows out of 1143 (76%) were considered reliable for 

subject 1, subject 2 and subject 3, respectively. 

Distributions of HR, BRBRS, BRRES and BREDR and 

results of |δ| analysis are reported in Table 2, while results 

of linear regression analysis and CCC analysis are depicted 

in Figure 2. BRBRS values (median: 29cpm) were lower 

(not statistically equivalent; P>0.05) than BRRES values 

(median: 38cpm) and BREDR values (median: 37cpm), 

which instead were equivalent (P<0.05). These results 

were also confirmed by the |δ| analysis, CCC analysis and 

linear regression analysis. Indeed, |δ| between BREDR and 

BRRES (median: 2cpm) is lower than those computed 

between BRBRS and BRRES (median: 8cpm), and between 

BRBRS and BREDR (median: 7cpm). Moreover, CCC (0.62; 

P<0.05) and regression line 

(BRRES=0.91∙BREDR+4.47cpm) confirmed a good 

agreement between BREDR and BRRES (Figure 2.C), 

differently from what obtained for BRBRS vs. BRRES (Figure 

2.A; CCC=0.27, P<0.05; regression line: 

BRRES=0.29∙BRBRS+29.15cpm) and BRBRS vs. BREDR 

(Figure 2.B; CCC=0.20, P<0.05; regression line: 

BREDR=0.18∙BRBRS+31.05cpm). 

 

Table 2. Distributions of HR, BRBRS, BRRES and BREDR and 

results obtained from |δ| analysis. 

 

HR (bpm) 128[106;137] 

BRBRS (cpm) 29[21;37] 

BRRES (cpm) 38 [34;41] 

BREDR (cpm) 37 [34;39] 

|δ| 

(cpm) 

BRBRS vs. BRRES 8[3;14] 

BRBRS vs. BREDR 7[3;13] 

BREDR vs. BRRES 2[1;4] 

 

4. Discussion 

Data acquired by wearable sensors during high-altitude 

activity were used to validate the SBMM-based procedure 

for EDR extraction in exercise conditions. One of the main 

challenges of signal processing applied on data acquired 

during exercise is managing their low quality. These 

signals are usually corrupted by high level of noises, 

usually divided into physiological interferences (e.g., 

muscular noise) or technical issues (e.g., data loss). These 

noises make signals very difficult to be processed and, in 

case of ECG processing, the identification of fiducial point 

positions becomes very hard. SBMM-based procedure 

requires R-peak positions to be applied; thus, their reliable 

identification is essential. In this study, a novel EEMD-

based method, specifically designed for ECG acquired 

during exercise, was applied to identify R-peak positions. 

Despite the very good performance of the EEMD-based 

method [20], several analyzed windows were not reliable 

for EDR extraction (56%), and thus have been excluded. 

High percentages of rejected windows suggest the need of 

a new denoising algorithm specifically designed for data 

acquired during exercise. Future studies will be focused on 

the definition of novel denoising procedures. 

Obtained results confirmed what suggested by the 

literature [8], i.e., physiological measurements indirectly 

provided by BioHarness 3.0 seem not to be clinically 

reliable such as biosignals directly recorded with the same 

wearable sensors. This result is confirmed by the BRBRS 

distribution, which values clearly underestimate BR. On 

the other hand, BRRES values are clinically reliable. High 

values of BRRES better reflects the clinical situation of 

studied subjects that are performing trekking (high level of 

exercise) and in condition of possible hypoxia. Both these 

environmental conditions provoke an increase of 

cardiorespiratory rhythms, as depicted by the increase of 

BR, an overall indicator of exertion in the context of 

exercise physiology. 

 
 

Figure 2. Scatter plots of BRBRS vs. BRRES (panel A), BRBRS vs. BREDR (panel B) and BREDR vs. BRRES (panel C). The 

regression lines are represented in red. Parameter values of regression lines and concordance correlation coefficients (CCC) 

are also reported. * indicates statistical significance (P) lower than 0.05. 

 

Page 3



Finally, comparison between BREDR vs. BRRES 

confirmed the goodness of SBMM-based procedure, 

proved by the similarity between the distributions (BREDR: 

38 [34;41]cpm; BRRES: 37 [34;39]cpm), the low values of 

|δ| (2[1;4]cpm), the satisfactory value of CCC (0.62; 

P<0.05) and the good fit of the regression line 

(BRRES=0.91∙BREDR+4.47cpm). Considering the 

importance of respiration in high-altitude sports, future 

studies will investigate the possibility to estimate by EDR 

extracted by SBMM-based procedure other clinical 

important respiratory features such as volumes. 

 

5. Conclusion 

SBMM-based procedure is an effective method to 

extract EDR from data acquired by wearable sensors 

during high-altitude physical activities, providing reliable 

and clinically relevant features of the respiratory system.  

 

References 

[1] M. Khodaee, H.L. Grothe, J.H. Seyfert, K. VanBaak, 

“Athletes at High Altitude”, Sports Health., vol. 8, no. 2, pp. 

126-132, Mar.-Apr. 2016. 

[2] M. Burtscher, W. Nachbauer, P. Schröcksnadel, “Risk of 

traumatic death during downhill skiing compared with that 

during mountaineering” Skiing trauma and safety, In: ASTM 

International, vol. 11, pp. 23-19, May 1997. 

[3] L. Schrtka, A. Slama, J. Muehlbacher, V. Bessa, P. 

Lichtenegger, Á. Ghimessy, G. Ebenbichler, R. Winkler, P. 

Faybik, E. Nachbaur, C. Aigner, K. Hoetzenecker, P. Jaksch, 

A. Benazzo, “Cardiopulmonary response to high-altitude 

mountaineering in lung transplant recipients- The Jebel 

Toubkal experience”, Scand. J. Med. Sci. Sports., vol. 31, no. 

10, pp. 1941-1948, Jul. 2021. 

[4] D. Zhang, J. She, Z. Zhang, M. Yu, “Effects of acute hypoxia 

on heart rate variability, sample entropy and 

cardiorespiratory phase synchronization”, Biomed. Eng. 

Online, vol. 13, no. 1, Jun 2014, Art. no. 73. 

[5] B.S. Bhutta, F. Alghoula, I. Berim. “Hypoxia”, In: StatPearls, 

Jan 2022. 

[6] K. Iwasaki, Y. Ogawa, K. Aoki, T. Saitoh, A. Otsubo, S. 

Shibata, “Cardiovascular regulation response to hypoxia 

during stepwise decreases from 21% to 15% inhaled 

oxygen”, Aviat. Space Environ. Med., vol. 77, no. 10, pp. 

1015-1019, Oct. 2006  

[7] J. Dunn, R. Runge, M. Snyder, “Wearables and the medical 

revolution”, Personalized Medicine, vol. 15, no. 5, pp. 429-

448, Sep. 2018. 

[8] D. Nepi, A. Sbrollini, A. Agostinelli, E. Maranesi, M. 

Morettini, F. Di Nardo, S. Fioretti, P. Pierleoni, L. Pernini, 

S. Valenti, L. Burattini, “Validation of the heart-rate signal 

provided by the Zephyr BioHarness 3.0”, 2016 Comput. 

Cardiol. Conf., vol. 43, pp. 361-364, Sep. 2016, Art. no. 

7868754. 

[9] B. Mazzanti, C. Lamberti, C., J. De Bie, “Validation of an 

ECG-derived respiration monitoring method”, 2003 Comput 

Cardiol. Conf., vol. 30, pp. 613-616, Sep. 2003. 

[10] D. Caggiano, S. Reisman, “Respiration derived from the 

electrocardiogram: A quantitative comparison of three 

different methods”, Proc. Annu. Northeast Bioeng. Conf., 

pp. 103-104, Mar. 1996. 

[11] C. Varon, J. Morales, J. Lázaro, M. Orini, M. Deviaene, S. 

Kontaxis, D. Testelmans, B. Buyse, P. Borzée, L. Sörnmo, 

P. Laguna, E. Gil, R. Bailón, “A Comparative Study of ECG-

derived Respiration in Ambulatory Monitoring using the 

Single-lead ECG”, Sci Rep, vol. 10, no. 5704, Mar. 2020. 

[12] B. Pambianco, A. Sbrollini, I. Marcantoni, M. Morettini, S. 

Fioretti, L. Burattini, “Electrocardiogram derived respiratory 

signal through the segmented-beat modulation method”, 

Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 5681-5684, Jul. 

2018. 

[13] A. Sbrollini, I. Marcantoni, A. Nasim, M. Morettini, L. 

Burattini, “Electrocardiogram-derived respiratory signal in 

sleep apnea by segmented beat modulation method”, ISCT 

2019, pp. 279-282, Jun. 2019. 

[14] A. Agostinelli, M. Morettini, A. Sbrollini, E. Maranesi, L. 

Migliorelli, F. Di Nardo, S. Fioretti, L. Burattini, “CaRiSMA 

1.0: cardiac risk self-monitoring assessment”, Open Sports 

Sci. J., vol. 10, no. 1, pp. 179-190, Oct. 2017. 

[15] G. Nazari, J.C. MacDermid, K.E. Sinden, J. Richardson, A. 

Tang, “Reliability of zephyr bioharness and fitbit charge 

measures of heart rate and activity at rest, during the 

modified Canadian aerobic fitness test, and recovery”, J. 

Strength Cond. Res., vol. 33, no. 2, pp. 559-571, Feb. 2019. 

[16] M. Al Ahmad, S. Ahmed, “Piezologist: a novel wearable 

piezoelectric-based cardiorespiratory monitoring system”, 

2018 IEEE Int. Conf. Innov. Intell. Syst. Appl., Art. no. 

8466275, Sep. 2018. 

[17] J. de Bruijn, H. van der Worp, M. Korte, A. de Vries, R. 

Nijland, M. Brink, “Sport-specific outdoor rehabilitation in 

a group setting: do the intentions match actual training 

load?”, J. Sport Rehabil., vol. 27, no. 2, pp. 151-156, Mar. 

2018. 

[18] C. Massaroni, A. Nicolò, D. Lo Presti, M. Sacchetti, S. 

Silvestri, E. Schena, “Contact-based methods for measuring 

respiratory rate”, Sensors, vol. 19, no. 4, Art. no. 908, Feb. 

2019. 

[19] V. Verratti, D. Bondi, G. Mulliri, G. Ghiani, A. Crisafulli, T. 

Pietrangelo, M.E. Marinozzi, P. Cerretelli, “Muscle Oxygen 

Delivery in the Forearm and in the Vastus Lateralis Muscles 

in Response to Resistance Exercise: A Comparison Between 

Nepalese Porters and Italian Trekkers”, Front Physiol., vol. 

11, Art. no. 607616, Nov. 2020 

[20] S. Romagnoli, I. Marcantoni, K. Campanella, A. Sbrollini, 

M. Morettini, L. Burattini, “Ensemble empirical mode 

decomposition for efficient r-peak detection in 

electrocardiograms acquired by portable sensors during sport 

activity”, MeMeA 2021, Art. no. 947859, Jun 2021. 

[20] A. Agostinelli, A. Sbrollini, C. Giuliani, S. Fioretti, F. Di 

Nardo, L. Burattini, “Segmented beat modulation method for 

electrocardiogram estimation from noisy recordings”, Med. 

Eng. Phys., vol. 38, no. 6, pp. 560-568, Jun. 2016.  

 

 

Address for correspondence: 

Laura Burattini 

Department of Information Engineering,  

Università Politecnica delle Marche,  

via Brecce Bianche 12, 60131, Ancona, Italy. 

E-mail address. l.burattini@univpm.it 

Page 4


